INTERCITY TRANSIT

Zero-emission Fleet Transition Recommendations

Jonathon Yee – Director, Fleet and Facilities January 17, 2024

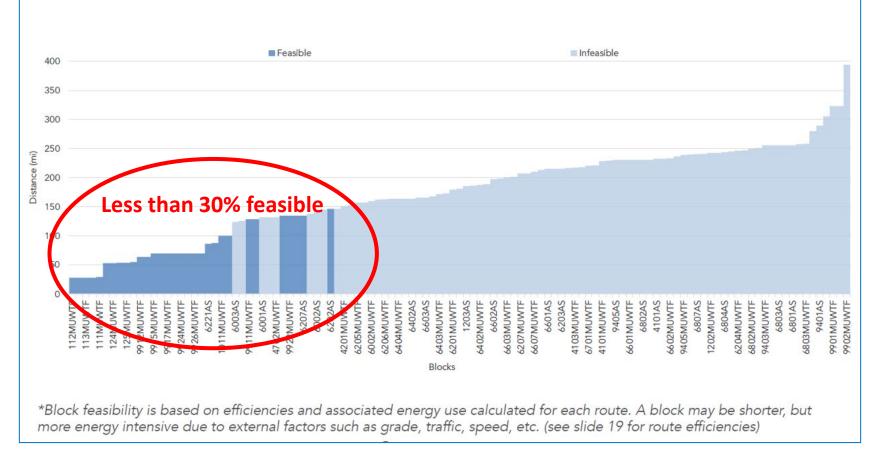
Discussion Topics

- A Brief Look Back
- Analysis Results
- Looking forward

A Brief Look Back

KEY CONSIDERATIONS (from October 2021):

- Focus on green <u>and</u> efficiency <u>and</u> cost
- Funding availability
- Infrastructure requirements and available site space
- Fuel/Energy availability
- Vehicle performance (primarily range)
- "Fit" into existing operations and our service to the community
- Resiliency for continuity of operations and emergency response


A Brief Look Back

	Battery Electric Bus	Fuel Cell Electric Bus
Reliable Range	130-190 miles on a single charge (or indefinite range with on- route charging)	200-320 miles before refueling
Fueling Technology	Depot or on-route charging • Plug-in charging • Wireless inductive charging • Overhead conductive charging	 Hydrogen storage and fueling station Purchased liquid or gaseous hydrogen (most common) Produce hydrogen on-site through electrolysis or natural gas reformation
Capital Costs	 BEBs are currently more expensive than diesel buses Charging infrastructure costs vary and do not scale easily; incrementally more charging infrastructure will be required for more buses 	 FCEBs are currently more expensive than BEBs Fueling infrastructure costs vary and depend on the required fueling rate. Infrastructure scales more easily with similar equipment and space requirements. Additional buses do not necessarily require additional infrastructure
Fueling Considerations	 Depot-charged buses may require hours to fully recharge Electricity rates will have a significant impact on fuel costs 	 Refueling procedure and time required are slower than diesel buses, but similar to Compressed Natural Gas (CNG) fueling Electricity costs may be significant if producing hydrogen on- site Relatively few hydrogen suppliers across the country; costs may vary based on the distance from the supplier

Analysis Results

2023 Fixed-Route Service Assessment*

Analysis Results

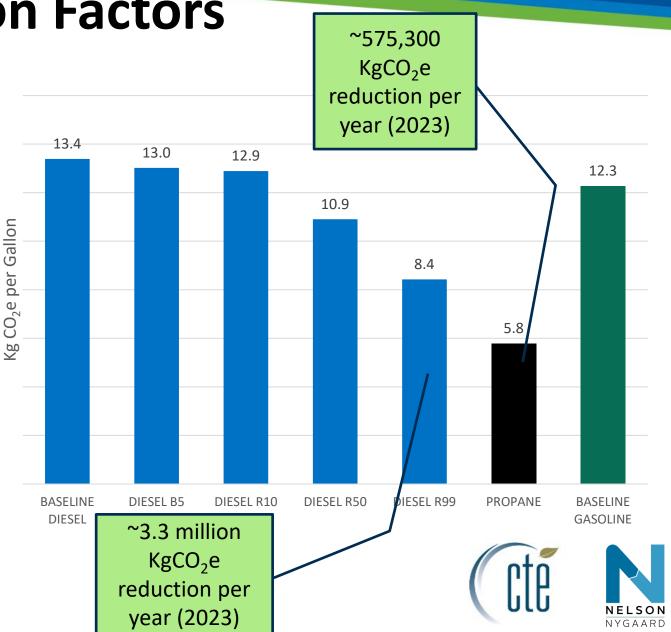
BEB

Cumulative cost projections 2023 – 2050 (Fixed Route only)

	Total Cost of Ownership	Baseline	BEB Depot Charging Only	BEB Depot and On-Route Charging	Mixed Fleet (BEB/FCEB)	FCEB Only
	Fleet	\$270,264,000	\$408,825,000	\$468,644,000	\$477,540,000	\$493,523,000
	Fuel	\$109,293,000	\$71,148,000	\$50,543,000	\$71,297,000	\$102,052,000
	Maintenance	\$95,730,000	\$81,464,000	\$73,971,000	\$79,948,000	\$88,172,000
	Infrastructure	\$-	\$10,598,200	\$21,599,000	\$17,677,000	\$11,636,000
	Total	\$ 475.3 M	\$ 572 M	\$ 614.8 M	\$646.5 M	\$ 695.4M
	Compared to Baseline	-	+ \$ 96.8 M	+ \$139.5 M	+ \$ 171.2 M	+ \$ 220.1 M
	% of Blocks Achievable by 2050	0%	83%	100%	100%	100%
	Cumulative Metric Tons of CO ₂ e Reduced	-	~70,000	~108,000	~62,000 - 113,000	~0 - 121,000

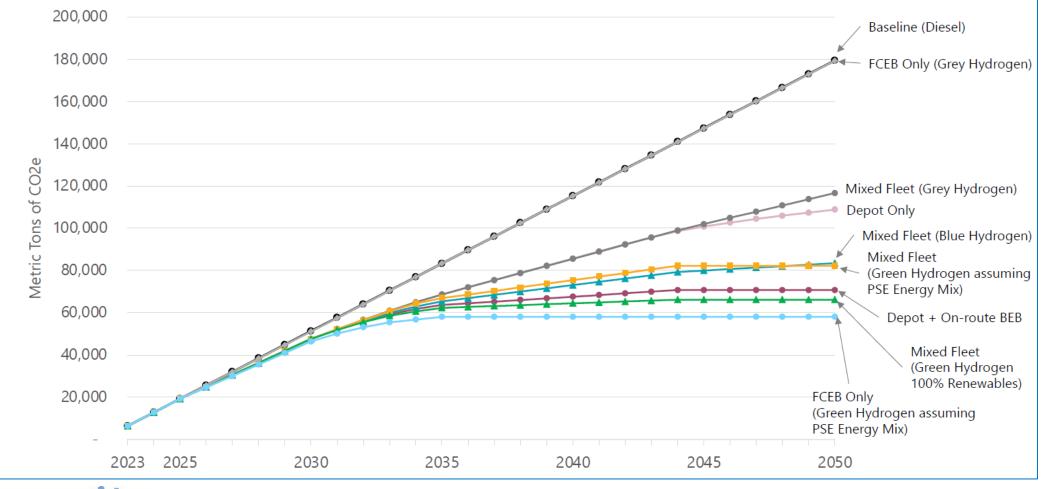
Assumptions:

- > 100% ZEB purchases beginning in 2026 for fleet replacement
- Infrastructure totals DO NOT include property acquisition or utility upgrades
- Fuel costs:
 - Hydrogen = \$8.61/kg PNW H2 Hub expected to drive costs down (~30%)
 - Electricity = \$0.081/kwWh, Demand charges \$11.16 \$15.24/kW (actual charging rate structure would be negotiated)
 - ~6MW needed for BEB Depot Charging
 - No solution for resiliency included


Fleet Size

FCEB

Well to Wheel Emission Factors

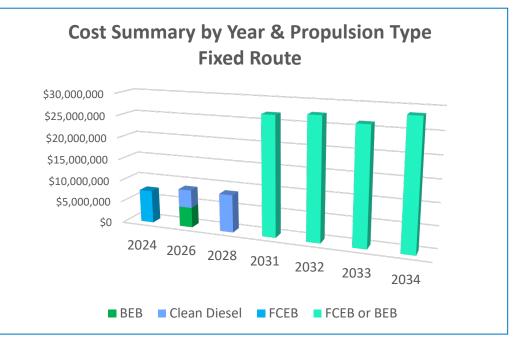

- Emissions factors obtained from U.S.
 Environmental Protection Agency
- U.S. Renewable Fuel Standard (RFS) program analyzes CO₂ emissions from production, transportation and use of renewable fuels
- Intercity fuel transitions
 - B5 2008
 - Propane 2018 (DAL only)
 - R10 July 2020
 - R50 Oct 2021
 - R99 Jan 2023

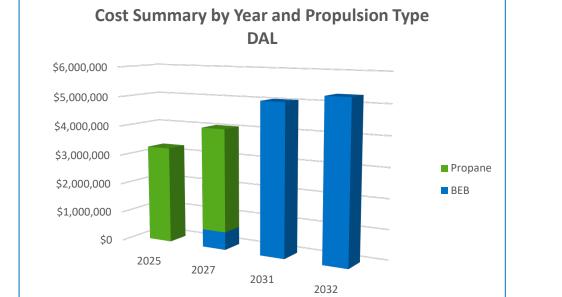
INTERCITY

Analysis Results

Cumulative Emissions – All scenarios

INTERCITY


We've done the analysis, so which way do we head from here?


Fixed Route Fleet Transition Recommendation:

- 2024
 - FCEB (5 buses) Awarded Grant Projects
- 2026
 - BEB (3 buses and charging)
 - Clean Diesel (5 buses)
- 2028
 - Clean Diesel replacements (10 buses)
 - Begin Infrastructure Deployment
- 2031 and beyond:
 - ZEB purchases for all replacements technology TBD

Dial-A-Lift Fleet Transition Recommendation:

- 2025
 - Propane (12 buses)
- 2027
 - BEB (2 buses)
 - Propane (12 buses)
- 2028
 - Begin Infrastructure Deployment
- 2031
 - BEB (14 buses)
- 2032
 - BEB (14 buses)

Vanpool Fleet Transition Recommendation:

- Monitor WA Zero-Emission Vehicle laws, rules, initiatives
 - Example: WA Zero Emission Vehicles Law = 2035 all light/medium duty vehicle sales 100% ZEV
- Watch the market for feasible vehicle technologies, charging partnerships for groups, and grant opportunities

Non-Revenue Fleet Transition Recommendation:

- Monitor WA Zero-Emission Vehicle laws, rules, initiatives
 - Example: WA Zero Emission Vehicles Law = 2035 all light/medium duty vehicle sales 100% ZEV
- Watch the market for feasible vehicle technologies, charging, and grant opportunities

- **Next Steps**
 - Phase II:
 - Review Analysis results for decision making Q4/2023
 - Create Fleet Transition Plan Q1/2024
 - Comprehensive plan to include all FTA requirements and change management plans (review and refresh as needed)
 - Phase III:
 - ZEB implementation grant funded demonstration projects
 - Site Master planning
 - Based on long-term transition plan

Thank you!

Jonathon Yee jyee@intercitytransit.com

